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Abstract

Discovering causal relations from observational data is at

the heart of scientific research. Most causal discovery meth-

ods assume that the data have only one variable type. In

real-world problems, however, data can consist of a mix-

ture of continuous, discrete, and categorical variables. In

this paper, we examine the causal discovery problem on

mixed data. We introduce a general tree-structured func-

tional causal model, which is well suited for characterizing

the generating mechanisms of mixed data by allowing non-

differentiability and nonlinearity. We present corresponding

identifiability results, showing that under mild conditions,

the causal directions can be uniquely determined from ob-

servational distributions. Further, we prove that the causal

direction between continuous and discrete variables is gen-

erally identifiable under a much larger function class. Based

on the theoretical findings, we propose an effective causal

discovery method leveraging a consistent score function and

powerful tree-learning techniques. Experiments on both syn-

thetic and real data verify the effectiveness of our approach.

1 Introduction

Discovering causal relations among random variables
is a fundamental and challenging task in science. Al-
though interventions or randomized trials can be used
for inferring causal relations, in many cases, they can
be expensive, unethical, or even impossible. Thus, it is
more desired to perform causal discovery from passively
observed data [1, 2].

Causal relations are typically represented by a Di-
rected Acyclic Graph (DAG) where nodes represent
variables and directed edges depict direct causal re-
lations. Under assumptions such as Markovness and
faithfulness [2], constraint-based [1] and score-based [3]
methods can identify partial causal relations from ob-
servational data and output a Markov equivalence class
of DAGs, but still leave some causal directions unde-
termined. With the aid of Structural Equation Mod-
els (SEMs), the indeterminacy issue could be overcome
under certain assumptions. Methods built upon SEMs
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[4, 5, 6] restrict the causal mechanisms to fall in specific
function classes (e.g., linear non-Gaussian in Shimizu
et al. [4]), then utilize the resultant asymmetries be-
tween the cause and effect variables to distinguish be-
tween DAGs in a Markov equivalence class. Though var-
ious function classes have been explored, most SEMs are
built upon a common prerequisite: the variables share
a common data type, e.g., variables are all continuous
[4, 5, 6] or all discrete [7].

In real-world tasks, however, data often consist of a
mixture of continuous (numerical), discrete (numerical),
and categorical variables, thereby making most SEM-
based methods inapplicable. Some beneficial efforts
[8, 9, 10] have been made to design SEM-based methods
to handle mixed data, but their applicability may
be hindered by strict restrictions on the linearity of
structural equations [8] or noise distributions [9, 10]. To
make causal discovery more practical in real problems,
it is necessary to investigate a new class of SEMs that is
both capable of handling mixed data and general enough
to approximate the underlying data generating process.

A central concern of designing an SEM-based
method for mixed data is the choice of function class.
Current SEMs are mostly from the differentiable func-
tion class, which excels in handling pure continuous data
by leveraging the power of modern neural networks [6].
However, in mixed modeling tasks involving both cate-
gorical and numerical variables, the generating mecha-
nisms can be nonlinear and non-differentiable. It is ob-
served that tree-based models are more suited for such
tasks [11]: trees can directly split on each possible value
of a categorical variable without breaking the seman-
tic meanings and utilize the power of ensembling [12].
Moreover, the modeling capabilities of trees can be fur-
ther enhanced by incorporating neural networks as the
predictive function in leaf nodes [13]. In this way, a hier-
archical tree-structured neural network, which is at least
as expressive as general neural networks even on pure
numerical data, can be built. Thus, it can be beneficial
to enrich the SEM family with flexible and powerful
tree-structured models for handling mixed data.

In this paper, we study the causal discovery problem
on mixed data under a class of general tree-structured
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SEMs. The concerned variables include continuous, dis-
crete, and categorical ones, encompassing a wide range
of real-world problems. We jointly model the gener-
ating process of various types of variables by allow-
ing the causal mechanisms to be nonlinear and non-
differentiable tree-structured functions. In contrast to
previous works assuming the noise distribution function
to have specific forms [9, 10], we only assume the noise
variable to have continuous or discrete support. We also
study the identifiability of the tree-structured SEM, i.e.,
finding under what conditions can one uniquely iden-
tify the causal directions from mixed data. We find
that, under a large function class including the tree-
structured ones, there is an intrinsic asymmetry be-
tween discrete and continuous variables that can ben-
efit causal discovery, indicating that the differences in
variable types may be a gift rather than an obstacle
for identifying causal relations. Leveraging the asym-
metry, we derive the bivariate identifiability results for
possible combinations of the concerned variable types,
showing that the causal directions between two vari-
ables are generally identifiable under mild conditions.
Related results are extended to the multivariate case as
well. Based on our theoretical findings, we develop an
effective three-stage causal discovery method utilizing
a consistent score function and powerful nonparametric
tree-learning methods. To summarize, our contributions
are mainly threefold:

1. We propose a tree-structured SEM for characteriz-
ing the causal mechanisms of mixed data.

2. We provide identifiability results for the proposed
SEM, showing that under mild conditions, the
causal directions can be uniquely determined from
observational distributions. More general results
on continuous-discrete causal relations under a
larger function class are also presented.

3. We design a causal discovery method leveraging
the tree-structured SEM. Experiments on both
synthetic and real data verify its effectiveness.

2 Related Work

Constraint-based methods, such as PC [1], utilize con-
ditional independence tests to recover the causal struc-
ture. Some proposals have been made to derive such
tests for various variable types to adapt constraint-
based methods for mixed data. Cui et al. [14] assumed
that data were from a Gaussian copula model and built
the independence tests upon the correlation matrix es-
timated by Gibbs sampling. Tsagris et al. [15] pro-
posed to use likelihood ratio tests and derived symmet-
ric conditional independence tests. Sedgewick et al. [16]
applied a pseudo-likelihood method to learn an initial

skeleton, then used the PC-Stable algorithm with likeli-
hood ratio tests. Handhayani and Cussens [17] proposed
a kernel alignment approach to computing a pseudo-
correlation matrix that can be used in conditional inde-
pendence test.

On the other hand, the score-based methods, such
as GES [3], aim to find the causal structure by optimiz-
ing a score function. Efforts have been devoted to de-
signing score functions for mixed data as well. Andrews
et al. [18] proposed the conditional Gaussian score and
mixed variable polynomial score. They assumed that
given discrete variables, the continuous variables follow
a multivariate Gaussian distribution. Later, Andrews
et al. [19] derived a score function for data following
a degenerate Gaussian distribution. Huang et al. [20]
proposed a generalized score function that exploits re-
gression in a reproducing kernel Hilbert space to capture
the dependence between variables nonparametrically.

SEM-based methods for mixed data, which can
avoid the indeterminacy issue of previously mentioned
methods to some extent, have also been examined.
Wei et al. [8] considered a class of linear additive
noise functions for continuous and binary variables
and assumed a Laplace or logistic distribution for the
noise variable. Wei and Feng [9] assumed generating
mechanisms to be three times differentiable nonlinear
functions with additive Gaussian noise. Li et al. [10]
assumed categorical variable distributions are specified
by a softmax function by restricting the noise variables
to follow Gumbel distributions.

3 Model Definition

We aim to recover the underlying causal DAG from
m i.i.d. observed data points denoted by D =
{(xk1 , . . . , xkd)}mk=1. Let G = (V,E) be a DAG with
V = {1, . . . , d} denoting the node set and E ⊆ V2 the
edge set. A node j is a parent of i if (j, i) ∈ E. The set
of parents of i is denoted by PAi. We assume that each
node i is associated with a random variable Xi which
can be continuous (numerical), discrete (numerical) or
categorical. If Xi is a discrete variable, we assume
Xi ∈ Z. If Xi is a categorical random variable with
Ti ≥ 2 categories, we assume Xi ∈ [Ti] = {1, . . . , Ti}.

As mentioned in Sec. 1, tree-structured functions
are suited for describing mixed data. A decision tree
typically divides the input space into disjoint subsets
and makes predictions using functions defined on each
subset. The function class where a decision tree reside
is of the form f(x) =

∑
j IRj

(x)fi(x), where {Rj}j is a
partition of the input space and IRj (x) is the indicator
function taking value 1 if x ∈ Rj and 0 otherwise. More
powerful tree ensemble models, such as random forest
and gradient boosting decision trees, are typically a
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weighted average of trees, and thus can also be described
by the above function. To make a flexible and expressive
SEM, we mimic the tree structure by considering a
partition of the parental space of each variable and
propose the Tree-Structured Causal Model (TSCM).

Definition 3.1. (Parental partition) Suppose
that Xi ∈ Xi for i ∈ [d]. The parental partition of

Xi is a set {Rj
i}

Ki
j=1 such that

⋃Ki

j=1R
j
i =

∏
u∈PAi

Xu

(Cartesian product) and
⋂Ki

j=1R
j
i = ∅, where Ki ≥ 1 is

the size of the parental partition.

Definition 3.2. (Tree-Structured Causal Model)
A tree-structured causal model is defined as a tuple
(S,L(N)), where S = (S1, . . . , Sd) is a collection of d
equations and L(N) = L(N1, . . . , Nd) is the distribution
of mutually independent noise variables {N1, . . . , Nd}.
Given a DAG G, for each Xi, there is a parental parti-
tion {Rj

i}
Ki
j=1 and an associated noise Ni independent

of the parents PAi. If Xi is continuous (discrete), the
generating mechanism is

Si : Xi :=

Ki∑
j=1

IRj
i

(PAi) f
j
i (PAi) +Ni,(3.1)

where Ni is also continuous (discrete), f ji :
∏

u∈PAi
Xu

→ R (Z). If Xi is a categorical variable that can take
Ti distinct values,

Si : Xi :=

Ki∑
j=1

IRj
i

(PAi) f
j
i (Ni),(3.2)

where Ni is continuous and f ji : R→ [Ti].

We assume that the observed data are generated
by a TSCM. For continuous and discrete variables,
we model the generating process with a region-based
function and do not specify the function forms in each
region, thus allowing for modeling non-differentiable
and nonlinear relations. It is noteworthy that LiNGAM
[4] and ANM [5] are special cases of Eq. (3.1) by setting
Ki to 1, confirming the strong expressiveness of TSCMs.
While for categorical variables, as they are not amenable
to arithmetic operations such as addition, it may be
unnatural to model an interaction between the parents
and noise with certain functions. So we disentangle
them and posit that the parents take effect only through
the partition, and the noise decides how to generate a
categorical value through f ji (Ni).

The distribution L(X) generated by a TSCM is
Markov w.r.t. the corresponding DAG G [2]. As
a common practice [21], we further assume causal
minimality, i.e., L(X) is Markov w.r.t. G but not to
any proper subgraph of G.

4 Identifiability

We next study the identifiability of the TSCM, which
clarifies under what conditions can the causal structure
be fully determined from observational data. The
formal definition of identifiability is as follows:

Definition 4.1. (Identifiability) Given a distribu-
tion law L(X) = L(X1, . . . , Xd) that has been generated
by a TSCM with DAG G, G is identifiable if L(X) can-
not be generated by a TSCM with a DAG G′ 6= G.

As the identifiability issue between variables of a
common type has been extensively studied [7, 21, 22],
we focus on the identifiability of cases where variables
have distinct types. Results on single-type cases can
be found in Appendix. We first consider bivariate
identifiability, then extend the results to multivariate
cases. We start from the continuous-discrete case and
consider a more general class of functions that contains
TSCM as a special case. The following theorem shows
that under such a function class, there exists an intrinsic
asymmetry between cause and effect variables, which
can greatly benefit causal discovery.

Theorem 4.1. Suppose that f(x, ·) : R → R is in-
vertible and continuous for x ∈ Z, g(y, ·) : Z → Z is
invertible for y ∈ R, then a discrete random variable
X ∈ Z and a continuous random variable Y ∈ R, whose
p.d.f. is continuous, can be described by at most one of
Eq. (4.3) and Eq. (4.4) if X 6⊥⊥ Y :

Y = f(X,U) and X ⊥⊥ U,(4.3)

X = g(Y, V ) and Y ⊥⊥ V,(4.4)

where U ∈ R and V ∈ Z are noise variables, and the
p.d.f. of U is continuous and strictly positive over R.

Remark 4.1. As Eqs. (4.3) and (4.4) cannot hold si-
multaneously, Thm. 4.1 effectively states that the class
of causal models that can be described by f and g is
identifiable: X → Y if Eq. (4.3) holds and X ← Y o.w.
(it cannot be the case that both Eqs. (4.3) and (4.4) do
not hold due to the causal minimality assumption). The
functions f and g are general in the sense that they
contain extensions of common SEMs to mixed data as
special cases, including models with additive or multi-
plicative noise [4, 5, 7] and the post-nonlinear model
[6]. We do not restrict the functions to be continuous or
differentiable in their first arguments, which means that
the tree-structured function in Eq. (3.1) belongs to this
class as well. Moreover, the theorem is proved mainly by
exploiting an intrinsic asymmetry between discrete and
continuous variables, the difference between countable
and uncountable sets, rather than relying on assump-
tions on specific functional forms. The intrinsic asym-
metry can be seen as a hint telling us that identifying
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causal directions of a continuous-discrete pair may be
intrinsically easier than in the single-type case.

As a direct implication of Thm. 4.1, by assuming
only a weak condition on the continuous part and
without any additional restrictions on the discrete part,
we have the identifiability for the continuous-discrete
case in a TSCM:

Condition 4.1. For a tuple (L(Xi),L(Ni)), where
Xi ∈ R, the p.d.f. of Xi is continuous, and the p.d.f. of
Ni is continuous and strictly positive over R.

Corollary 4.1. Suppose that a discrete random vari-
able X1 ∈ Z and a continuous random variable X2 ∈ R
are generated by a TSCM ((S1, S2), L(N1, N2)) with a
graph G : X1 → X2 or G : X1 ← X2. If (L(X2),L(N2))
satisfies Cond. 4.1, then G is identifiable.

For the continuous-categorical case, the categorical
variable is generated by Eq. (3.2), which does not
necessarily follow Eq. (4.4) since the noise can be real-
valued and the function is typically not invertible in the
second argument as required in Thm. 4.1. However,
with analogous proof techniques, we find that the finite
size of the parental partition in the TSCM, along with
the uncountably many values the continuous variable
can take, results in another asymmetry between the
cause and effect variables. Therefore, Cond. 4.1 can
also be applied to ensure the identifiability in this case:

Theorem 4.2. Suppose that a categorical random vari-
able X1 ∈ [T1] and a continuous random variable X2 ∈
R are generated by a TSCM ((S1, S2), L(N1, N2)) with a
graph G : X1 → X2 or G : X1 ← X2. If (L(X2),L(N2))
satisfies Cond. 4.1, then G is identifiable.

We next consider the discrete-categorical case. Un-
fortunately, the causal direction is not identifiable if no
further constraints are imposed on a TSCM. We illus-
trate this point with the following proposition.

Proposition 4.1. Given a joint observational distri-
bution of a categorical random variable X1 ∈ [T1] and a
discrete random variable X2 ∈ X2 ⊆ Z, by setting K1 to
|X2| and each Rj

1 to contain a unique element from X2

for j ∈ [|X2|], there always exist functions {gj1}
K1
j=1 and

a random variable N ′1 such that X1 can be generated by

X1 :=

K1∑
j=1

IRj
1

(X2) gj1(N ′1) and X2 ⊥⊥ N ′1(4.5)

while giving the same observational distribution.

By comparing Eqs. (3.2) and (4.5), one can find that
the causal direction from the discrete variable to the
categorical one appears to hold no matter what the true
causal direction is. An analogous result for the reverse
direction holds as well. Therefore, no causal conclusions
can be made. However, a necessary condition for
Prop. 4.5 to hold is that the size of the partition of
the parent variable is as large as the cardinality of
the sample space, which is quite restrictive. In reality,
it is common that some discrete values have identical
effects on the generating process of another variable.
For example, the age of a patient (discrete) directly
causes which treatment strategy to use (categorical). It
is rarely the case that every age value has a significant
effect on the treatment choice. It is more reasonable
to assume that the treatment choice is affected by age
groups, forming a partition of a much smaller size. In
light of this, it is reasonable to require the partition
size to be smaller than the cardinality of the discrete
sample space. The requirement and further conditions
are stated in Cond. 4.2, leading to the identifiability
results in Thm. 4.3.

Condition 4.2. The tuple ((S1, S2),L(X1, X2)),
where X1 ∈ X1 = [T1] and X2 ∈ X2 ⊆ Z, satisfies
that if X2 is the parent of X1, the size of the parental
partition K1 < |X2| and that if X1 is the parent of
X2, the size of the parental partition K2 < |X1|.
Further, the following two conditions are not satisfied
at the same time: (1) there exist two different values
a, b ∈ X2, and a constant C, such that ∀x ∈ X1,

Pr (X2 = a | X1 = x) = C · Pr(X2 = b | X1 = x);

(2) there exist two different values a, b ∈ X1, and a
constant C, such that ∀x ∈ X2,

Pr (X1 = a | X2 = x) = C · Pr(X1 = b | X2 = x).

Theorem 4.3. Suppose that a categorical random vari-
able X1 ∈ [T1] and a discrete random variable X2 ∈ Z
are generated by a TSCM ((S1, S2), L(N1, N2)) with
a graph G : X1 → X2 or G : X1 ← X2. If ((S1, S2),
L(X1, X2)) satisfies Cond. 4.2, then G is identifiable.

Remark 4.2. Cond. 4.2 requires that there does not ex-
ist a stable proportional relation between the conditional
probabilities from two directions, which is reasonable
to hold in real problems since a physical law ensuring
the exact proportional relations in probability would be
pathological and should be rare. This condition can also
be used to give identifiability results in other scenarios.
E.g., we find that it coincides with the assumption made
to ensure the identifiability between two categorical vari-
ables in Cai et al. [22].
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Based on Peters et al. [21, Thm. 28], we extend the
bivariate identifiability results to the multivariate case:

Theorem 4.4. Let L(X) = L(X1, . . . , Xd) be gener-
ated from a TSCM with graph G. If L(X) satisfies causal
minimality [2], and for all j ∈ V, i ∈ PAj and all sets
S ⊆ V with PAj \ {i} ⊆ S ⊆ NDj \{i, j}, where NDj

represents the non-descendents of j, there is an xS with
pS (xS) > 0 such that

(
Si|xPAj\{i}

, L(Xi | XS = xS),

L(Nj)
)

satisfies the conditions for corresponding vari-
able types in Cor. 4.1, Thm. 4.2-4.3, and Prop. B.1-B.3
(in Appendix, stating identifiability results for variables
that share a common data type), then G is identifiable.

5 Proposed Method

Assuming the conditions ensuring the identifiability
(e.g., the conditions in the previous section) hold,
there is a unique causal graph that can generate the
observational data distribution, which means that it is
possible to recover the underlying causal relations from
purely observational data. A typical method based on
SEMs is performing regression for each variable with the
function family specified by the SEM, then measuring
the independence between residuals (or noise) and the
predictors [6, 21]. For example, in the bivariate case,
if the independence only holds in one direction, we
conclude that the direction is the causal one. However,
in practice, the conditional independence tests are less
reliable since we only have finite data points. In
the mixed-data case, the problem is exacerbated since
the independence tests must be performed between
variables with distinct data types. Moreover, as shown
in the following proposition, one can always find a noise
variable that is dependent on the cause variables with a
tree-structured function even from the correct causal
direction in a TSCM, meaning that we cannot even
approximately recover the true noise in Eq. (3.2).

Proposition 5.1. For any categorical variable Xi gen-
erated from Eq. (3.2) with non-empty parents, there ex-
ist a random variable N ′i 6⊥⊥ PAi and functions {gji }

Ki
j=1

such that generating Xi using

Xi :=

Ki∑
j=1

IRj
i

(PAi) g
j
i (N ′i)

gives identical observational distribution of Xi and PAi.

As we cannot distinguish between the true noise Ni

and another variable N ′i from observational data, in-
dependence measures between parents and noise in a
TSCM are infeasible. Instead, we develop a causal dis-
covery method by optimizing a consistent score function

that distinguishes the true causal model from others in
the sample limit [23] to avoid measuring independence.

Definition 5.1. (Penalized log-likelihood score)
Given a DAG G = (V,E) and observed data
D={(xk1 ,. . . , xkd)}mk=1, let P(G) denote the class of
distributions that can be generated by G. The penalized
log-likelihood score is

s (G, D) = max
p∈P(G)

1

m

m∑
k=1

log p(xk1 , . . . , x
k
d)− |E|

logm
.

Proposition 5.2. Suppose that G∗ is the identifiable
true causal graph generating D={(xk1 ,. . . , xkd)}mk=1, un-
der some technical conditions [23, Thm. 1], the penal-
ized log-likelihood score is consistent, i.e., ∀ G 6= G∗,

Pr (s (G, D) < s (G∗, D))→ 1 as m→∞.

The penalized log-likelihood score consists of a max-
imum log-likelihood and a regularization term penaliz-
ing graphs with more edges. Prop. 5.2 shows that the
score is consistent in the sense that the true causal graph
attains the maximum score asymptotically. Assuming
that the causal graph is identifiable under a TSCM, the
causal discovery problem turns into finding the DAG
with a maximized score.

The question arises of how to compute the log-
likelihood score for a TSCM. Since the tree-structured
functions are generally fitted non-parametrically and we
do not specify the noise distribution, the likelihood is
not directly available. As the distribution is Markov
with respect to the causal DAG, we factorize the prob-
ability of the observed data into

m∏
k=1

p
(
xk1 , . . . , x

k
d

)
=

m∏
k=1

d∏
i=1

p
(
xki | pak

i

)
.(5.6)

For a categorical Xi, by fitting a tree-based classifier
over its parents, we obtain a posterior probability of
Xi which is an estimate for p(xki | pak

i ). For a
numerical Xi, according to Eq. (3.1), we can rewrite
the conditional probability with

p
(
xki | pak

i

)
= pni

xki − Ki∑
j=1

IRj
i

(
pak

i

)
f ji
(
pak

i

)
where pni is the probability density (mass) function
of the noise Ni if Xi is continuous (discrete). By
regressing each numerical variable on its parents with a
tree-based regressor such as a random forest, we obtain
an approximation f̂i for the region-based function and
a noise estimate n̂i = xki − f̂i(pak

i ). If the noise is
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continuous, we estimate its density with kernel density
estimation [24]. If the noise is discrete, an empirical
probability mass function is available by counting the
frequencies of each value. Plugging the estimates into
Eq. (5.6) gives us a computable likelihood function.

In order to find a DAG maximizing the penalized
log-likelihood score, a direct method is to enumerate ev-
ery possible DAG and select the one with the maximum
score. The search space grows super-exponentially with
d [3], meaning that brute-force search is only appli-
cable to cases with a very small number of variables.
Referring to Bühlmann et al. [25], we propose a local
search method named TRee-bAsed Causal discovery
by greedy Edge Removing (TRACER) to find the
DAG with the maximum score. TRACER is divided
into three phases. We first apply variable selection in
Phase 1 to reduce the search space. Then in Phase
2, starting from an initial overly connected directed
graph, we greedily remove redundant edges that give a
higher score until we have a valid DAG. In Phase 3, we
again run variable selection as a post-processing step to
make the found structure sparse and further increase
the score. An illustration of TRACER is given in Fig. 1
and details of the three phases are given as follows:

A B

D C

E

(a) Ĝ0 after Phase 1.

A B

D C

E

(b) Ĝ1 in Phase 2.

A B

D C

E

(c) Ĝ2 (also ĜT ) in Phase 2.

A B

D C

E

(d) Ĝ3 (also ĜT ′ ) in Phase 3.

Figure 1: An illustration of the TRACER algorithm.
The initial graph (a) after Phase 1 contains directed
cycles A → E → D → A and redundant edges B → C
and B ← C (which also constitutes a length-2 directed
cycle). Then in Phase 2, edges are removed in (b) and
(c) greedily according to the gain in score until we have a
valid DAG ĜT . In Phase 3, redundant edges are further
pruned to increase the overall score and we get a final
output in (d).

Phase 1. Search space reduction by variable selection.
For each numerical (categorical) variable Xi, perform
regression (classification) using Xi as the target variable
and {Xj}j 6=i as predictors with a variable selection
method. We use the optimal decision tree [26, 27]

as the variable selection method to filter out variables
that are not very predictive for a target variable as
the generating mechanisms considered in this paper
have a tree structure, but other selection methods may
be applied as well. The selected predictors form a

candidate parental set P̂Ai for Xi.
Phase 2. DAG search by greedy edge removing. We
start from a graph Ĝ0 = (V,E0) containing all edges
pointing from variables in the candidate parent sets

P̂Ai to corresponding Xi. Ĝ0 is a directed graph
possibly with directed cycles and bi-directed edges. The
following procedure is repeated until we get a valid
DAG ĜT : in iteration t ≥ 1, we obtain a new graph
Ĝt = (V,Et) by setting Et to Et−1 \ {(u, v)}, where
(u, v) is an edge that is part of a directed cycle in Ĝt−1
and by removing it we get a locally maximized score.
The procedure of finding the edge to remove is in Alg. 1.
Phase 3. DAG refinement by variable selection. We
run variable selection for each variable on corresponding
parents encoded by ĜT to further refine the graph
structure. Let Γi denote the parents of Xi that are
not selected by the variable selection method, and
C ,

⋃
i∈[d] {(j, i) | j ∈ Γi}. We repeat the following

procedure: in each iteration, we remove an edge (j, i) ∈
C that gives a locally maximized score. The procedure
stops until it reaches a local maxima s(ĜT ′ , D). Finally,
ĜT ′ is output as the found causal structure.

Algorithm 1 DAG search by greedy edge removing

Input: (V,E0)
1: for i ∈ V do
2: si ← 1

m

∑m
k=1 log p̂(xki | p̂ak

i )

3: t← 0, δ ← −∞
4: while (V,Et) is not a DAG do
5: for (j, i) ∈ Et do
6: if there is a directed path from i to j in Et

then
7: s′i ← 1

m

∑m
k=1 log p̂(xki | p̂ak

i \ {xj})
8: if s′i − si > δ then
9: δ ← s′i − si, (u, v)← (j, i)

10: Et+1 ← Et \ {(u, v)}, P̂Av ← P̂Av \ {Xu}
11: sv ← s′v, t← t+ 1, δ ← −∞
12: ĜT ← (V,Et)
Output: ĜT

The reason that we only remove edges in the
proposed method is that removing edges is more likely
to output sparse graphs than dense ones, which can be
less useful than sparse structures in real applications,
though the true causal graph may not be sparse at
all. Developing methods that combine the proposed
removing process and an edge-adding process, and still
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yield sparse graphs could be interesting and is left for
future work. The running time of TRACER mainly
depends on the number of calls to the log-likelihood
estimation procedure, which first performs tree-based
learning and then estimates probability density. The
number of iterations in Phases 2 and 3 is at most O(d2)
since an edge is removed in each iteration and there are
O(d2) edges. The iterations can be much fewer if the
variable selection method has filtered most superfluous
edges in Phase 1. The log-likelihood gain associated
with each edge removal can be calculated incrementally.
Specifically, in Phase 2, suppose we are at iteration t ≥ 1
and the edge removed in iteration t − 1 is (j, i). As
the log-likelihood can be factorized using Eq. (5.6) and
the gain of removing edges into variables other than
Xi has been computed in previous iterations, we can
save them and skip line 7 in Alg. 1 for such edges, and
only compute

∑m
k=1 log p(xki | pak

i ) for O(d) different
pak

i . So the overall number of calls to the log-likelihood
estimation procedure can be reduced to O(d3).

6 Experiments

We apply the proposed TRACER method to both syn-
thetic and real-world datasets to verify its effectiveness.

Implementations. We use optimal decision trees
[26], a tree learning method that can learn a sparse
and accurate tree, as the variable selection method in
Phases 1 and 3. Most tree-based learning methods can
be used in Phase 2. Here we apply random forest as
the basic learning procedure for its efficiency and wide
applicability. When the target variable is discrete, we
treat it as a continuous one when fitting a regression
model. A post-processing step is made to replace the
predicted value with the nearest one from the discrete
sample space. We used a kernel density estimator
with an RBF kernel to estimate the noise density.
The kernel width is set to twice the median distance
between input points, as suggested by Huang et al. [20].
Note that when the causal discovery task only involves
two variables, we skipped Phases 1 and 3 as variable
selection would be effectless.

Baselines and metrics. For multivariate cases,
we compare TRACER with constraint-based methods
for mixed data: Copula PC [14] and CausalMGM [16],
score-based methods for mixed data: Degenerate Gaus-
sian score (DG) [19] and the Generalized Score (GS)
[20] with greedy equivalence search [3]. Since these
methods output an equivalence class, we further com-
pare with methods that output a unique DAG, includ-
ing DirectLiNGAM [28], CAM [25] and NOTEARS [29].
For bivariate cases, in addition to those that have been
mentioned, we also compared the Additive Noise Model
(ANM) [5], the Post-NonLinear model (PNL) [6] and In-

formation Geometric Causal Inference (IGCI) [30]. We
use the F1 score, Structural Hamming Distance (SHD),
and Structural Intervention Distance (SID) as the evalu-
ation metrics for multivariate cases. We normalize SHD
and SID by dividing the number of edges and d(d − 1)
respectively. For methods that output a Markov equiv-
alence class, we provide the lower and upper bounds
attainable by members within the equivalence class or
report the average of the two bounds. For bivariate
cases, we report the accuracy.

6.1 Synthetic Data
Data Generation. To generate datasets from

TSCMs, we specify the number of variables d, the num-
ber of variables of each type, and the number of edges e.
In some experiments, we specify the graph density, de-
fined as ρ , 2e/d2, instead of directly specifying e. We
randomly set the data type of each variable to be contin-
uous, discrete, or categorical to satisfy the requirement.
An undirected graph is sampled from the Erdős-Rényi
model with the expected number of edges equal to e.
We obtain a DAG by orienting the undirected edges fol-
lowing a uniformly randomly picked ordering of the d
variables. Following the topological order in the DAG,
we generate the value of each variable from the value
of its parents and corresponding noise. Due to limited
space, we put more details in Appendix.

We conduct experiments on synthetic data gener-
ated from a TSCM where the functions in each region
of the parental partitions are parameterized by a linear
function or a randomly initialized neural network. For
each combination of the number of variables d, expected
number of edges e and the number of variables having
different types, we report results over 100 realizations.
We first make a simple test for TRACER on graphs
with d = 10 nodes using m = 1000 samples in each
realization. Fig. 2 shows that TRACER excels at han-
dling mixed data and is robust against all three metrics:
TRACER outperforms baselines on SHD and F1 scores
and is comparable to the best baseline in terms of SID.
The reason why most baselines do not perform well is
probably that they make restrictive assumptions on the
data generating process, but the assumptions (e.g., data
are from a Gaussian copula model in Cui et al. [14]) are
severely violated in this setting. GS does not assume a
specific functional form, thus achieving a small SID.

Sensitivity to the proportion of categorical
variables. We run experiments with the proportion
of categorical variables ranging from 0.1 to 0.5 and
d ∈ {10, 20, 30}. The graph density is set to 0.2. Fig. 3
shows that as the proportion of categorical variables in-
creases, the performance of baselines decreases, whereas
TRACER steadily outperforms baselines. This phe-
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Figure 2: Box plots of F1 score, normalized SHD
and SID with d = e = 10 and number of continu-
ous/discrete/categorical variables 4/3/3. For methods
that output an equivalence class, the upper and lower
bound of the normalized SID are plotted.

Dataset TRACER CAM NOTEARS ANM PNL IGCI

CE pairs 63.7% 51.3% 54.4% 54.9% 57.4% 57.9%
Abalone 92.9% 42.9% 42.9% 71.4% 50.0% 100%

Table 1: Accuracy on CE pairs and Abalone dataset.

nomenon suggests that TRACER is more suited for han-
dling mixed data, especially on data with a large pro-
portion of categorical variables, by inheriting the merits
of tree-structured models.

Sensitivity to dataset size, graph densities,
and the number of variables. We conduct exper-
iments with varying m, d, and ρ. Fig. 4 shows that
TRACER achieves superior performance on all three
metrics in most settings, which further verifies its effec-
tiveness. Although the GS method achieves a compara-
ble SID in some cases, it is computationally too costly
to scale to large graphs. For d = 50, we could not finish
experiments on GS within 48 hours.

6.2 Real Data The Cause-Effect (CE) pairs chal-
lenge dataset1 consists of real and semi-artificial vari-
able pairs. We run experiments on 594 numerical-
categorical pairs that have causal relations. Tbl. 1
shows that TRACER outperforms other baselines by
a large margin. We also conduct experiments on the
Abalone dataset2 which contains the age (discrete), sex
(categorical), and some real-valued physical measure-
ments of abalone. Both age and sex cause other vari-
ables. TRACER successfully identifies 13 out of 14
causal relations. The results in Tbl. 1 indicate that
on real data that are not necessarily generated from a
TSCM, TRACER is still very effective.

1http://www.causality.inf.ethz.ch/cause-effect.php
2https://archive.ics.uci.edu/ml/datasets/abalone
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Figure 3: Averaged F1 score, normalized SHD and
SID over 100 simulations with varying proportions
of categorical variables. The proportion of discrete
variables is set to 0.3. For methods that output a
Markov equivalence class, the SID curve depicts the
average of upper and lower bound for better readability.

7 Conclusion

In this paper, we examine causal discovery on mixed
observational data that contain continuous, discrete,
and categorical variables. We introduce a flexible and
expressive tree-structured causal model that allows non-
differentiability and non-linearity. We theoretically
analyze its identifiability and propose an effective tree-
based causal discovery method. Experiments on both
synthetic and real data verify the superiority of the
proposed method.
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A Proofs

Theorem 4.1. Suppose that f(x, ·) : R→ R is invertible and continuous for x ∈ Z, g(y, ·) : Z→ Z is invertible for y ∈ R,
then a discrete random variable X ∈ Z and a continuous random variable Y ∈ R, whose p.d.f. is continuous, can be
described by at most one of Eq. (4.3) and Eq. (4.4) if X 6⊥⊥ Y :

Y = f(X,U) and X ⊥⊥ U,(4.3)

X = g(Y, V ) and Y ⊥⊥ V,(4.4)

where U ∈ R and V ∈ Z are noise variables, and the p.d.f. of U is continuous and strictly positive over R.

Proof. Let fx(·) , f(x, ·) and gy(·) , g(y, ·). If both models hold, then

Pr(X = x)pu
(
f−1
x (y)

)
= p(x, y) = py(y) Pr

(
V = g−1

y (x)
)
.(A.1)

Given x, since fx(·) is surjective, we have p(x, y) > 0 for any y as long as Pr(X = x) > 0. For a fixed x0 with
Pr(X = x0) > 0, we can write

Pr(X = x0)

Pr
(
V = g−1

y (x0)
) =

py(y)

pu
(
f−1
x0 (y)

) .(A.2)

Let A ,

{
Pr(X=x0)

Pr(V =g−1
y (x0))

∣∣ y ∈ R
}

and B ,

{
py(y)

pu(f−1
x0

(y))

∣∣ y ∈ R
}

. We next prove by contradiction. Suppose that

there exists two different y1, y2 ∈ B such that y1 < y2. Due to the continuity of py(·), f−1
x0

(·) and pu(·) and the positivity

of pu(·), we have h(y) =
py(y)

pu(f−1
x0

(y))
is also continuous. Using the intermediate value theorem, we have [y1, y2] ⊆ B, so

|B| ≥ |R|. On the other hand, |A| ≤ |Z| since V can only take at most countably many values. Consequently, we have
|A| ≤ |Z| < |R| ≤ |B|, which is a contradiction since |A| = |B| according to Eq. (A.2). Thus, B contains only one element
and |B| = |A| = 1, meaning that

Pr(X = x0)

Pr
(
V = g−1

y (x0)
) = C,(A.3)

where C is a constant. We have

p(y | x0) =
p(x0, y)

Pr(X = x0)
(A.4)

=
py(y) Pr

(
V = g−1

y (x0)
)

Pr(X = x0)
(A.5)

=
py(y)

C
.(A.6)

Integrating both sides, we get

C = 1.(A.7)

Thus,
p(y | x0) = py(y).

Since the choice of x0 was arbitrary, we have X ⊥⊥ Y , which contradicts the condition that X 6⊥⊥ Y . So we conclude that
at most one of Eq. (4.3) and Eq. (4.4) holds.

Condition 4.1. For a tuple (L(Xi),L(Ni)), where Xi ∈ R, the p.d.f. of Xi is continuous, and the p.d.f. of Ni is continuous
and strictly positive over R.

Corollary 4.1. Suppose that a discrete random variable X1 ∈ Z and a continuous random variable X2 ∈ R are generated
by a TSCM ((S1, S2), L(N1, N2)) with a graph G : X1 → X2 or G : X1 ← X2. If (L(X2),L(N2)) satisfies Cond. 4.1, then
G is identifiable.

Proof. The conclusion follows directly from Thm. 4.1 by noting that the tree-structured function S2 with additive noise is
invertible and continuous in the noise variable N2 and that S1 is invertible in N1.
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Theorem 4.2. Suppose that a categorical random variable X1 ∈ [T1] and a continuous random variable X2 ∈ R are
generated by a TSCM ((S1, S2), L(N1, N2)) with a graph G : X1 → X2 or G : X1 ← X2. If (L(X2),L(N2)) satisfies
Cond. 4.1, then G is identifiable.

Proof. The proof is analogous to that of Thm. 4.1. Inheriting the symbols used in Thm. 4.1, we use f(x1, n2) to represent
the assigned tree-structured function in S2 (see Eq. (3.1)) and use g(x2, n1) to represent the assigned one in S1 (see
Eq. (3.2)). We aim to prove that at most one of Eq. (A.8) and (A.9) can hold:

X1 = g(X2, N1) =

K1∑
j=1

IRj
1

(X2) f j
1 (N1) and X2 ⊥⊥ N1,(A.8)

X2 = f(X1, N2) =

K2∑
j=1

IRj
2

(X1) f j
2 (X1) +N2 and X1 ⊥⊥ N2.(A.9)

Note that although f still satisfies the condition in Thm. 4.1, g is not. So we cannot directly apply Thm. 4.1.
From Eq. (A.8), we can write

Pr(X1 = x1 | X2) =

K1∑
j=1

IRj
1

(X2)hj(x1),(A.10)

where hj(x1) = Pr
(
f j
1 (N1) = x1

)
. Let fx1(·) , f(x1, ·), if Eq. (A.8) and (A.9) both hold, then

Pr(X1 = x1)pn2

(
f−1
x1

(x2)
)

= p(x1, x2) = p(x2) Pr(X1 = x1 | x2) = p(x2)

K1∑
j=1

IRj
1

(x2)hj(x1).(A.11)

Given x1, since fx1(·) is surjective, we have p(x1, x2) > 0 for any x2 as long as Pr(X1 = x1) > 0. For a fixed x1 with
Pr(X1 = x1) > 0, we can write

Pr(X1 = x1)∑K1
j=1 IRj

1
(x2)hj(x1)

=
p(x2)

pn2

(
f−1
x1 (x2)

) .(A.12)

The proof left is then analogous to that of Thm. 4.1 by noting that
∑K1

j=1 IRj
1

(x2)hj(x1) can take at most finite K1 values

for a fixed x1, which again leads to a contradiction of set cardinalities if the above equation can have more than one values.

Proposition 4.1. Given a joint observational distribution of a categorical random variable X1 ∈ [T1] and a discrete
random variable X2 ∈ X2 ⊆ Z, by setting K1 to |X2| and each Rj

1 to contain a unique element from X2 for j ∈ [|X2|], there
always exist functions {gj1}

K1
j=1 and a random variable N ′1 such that X1 can be generated by

X1 :=

K1∑
j=1

IRj
1

(X2) gj1(N ′1) and X2 ⊥⊥ N ′1(4.5)

while giving the same observational distribution.

Proof. The joint distribution of X1 and X2 can be factorized as

p(x1, x2) = p(x2)p(x1 | x2).(A.13)

Let N ′1 ∼ Uniform(0, 1) be a random variable independent of X2. For a fixed x2 ∈ Z, let αi , p(X1 = i | x2), i ∈ [T1], and

gx2
1 (N ′1) =

∑T1
k=1 I

(
N ′1 ∈

[∑k−1
i=0 αi,

∑k
i=0 αi

])
k. Let a new random variable X ′1 be generated from Eq. (4.5), we have the

conditional probability

p(X ′1 = i | x2) = αi = p(X1 = i | x2),(A.14)

which gives

p(x1, x2) = p(x′1, x2),(A.15)

so X1 can be generated from Eq. (4.5) and we have the same observational distribution.
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Condition 4.2. The tuple ((S1, S2),L(X1, X2)), where X1 ∈ X1 = [T1] and X2 ∈ X2 ⊆ Z, satisfies that if X2 is the parent
of X1, the size of the parental partition K1 < |X2| and that if X1 is the parent of X2, the size of the parental partition
K2 < |X1|. Further, the following two conditions are not satisfied at the same time: (1) there exist two different values
a, b ∈ X2, and a constant C, such that ∀x ∈ X1,

Pr (X2 = a | X1 = x) = C · Pr(X2 = b | X1 = x);

(2) there exist two different values a, b ∈ X1, and a constant C, such that ∀x ∈ X2,

Pr (X1 = a | X2 = x) = C · Pr(X1 = b | X2 = x).

Theorem 4.3. Suppose that a categorical random variable X1 ∈ [T1] and a discrete random variable X2 ∈ Z are generated
by a TSCM ((S1, S2), L(N1, N2)) with a graph G : X1 → X2 or G : X1 ← X2. If ((S1, S2), L(X1, X2)) satisfies Cond. 4.2,
then G is identifiable.

Proof. We need to prove that at most one of Eq. (A.16) and (A.17) hold:

X1 =

K1∑
j=1

IRj
1

(X2) f j
1 (N1), K1 < |X2|, and X2 ⊥⊥ N1,(A.16)

X2 =

K2∑
j=1

IRj
2

(X1) f j
2 (X1) +N2, K2 < T1, and X1 ⊥⊥ N2.(A.17)

Suppose that Eq. (A.16) holds. The following proof is based on Cai et al. [22]. Let Z , h(X2) be a random variable
that represents the region X2 falls into, meaning that IRZ

1
(X2) = I

Rh(X2)
1

(X2) = 1. Since Z can take at most K1 < |X2|
different values, there must exist two different a, b ∈ X2 such that h(a) = h(b) = z0. We have

Pr(X1 = x1) Pr(X2 = a | X1 = x1)

Pr(X2 = a)
(A.18)

= Pr(X1 = x1 | X2 = a)(A.19)

= Pr(X1 = x1 | X2 = a, Z = z0)(A.20)

= Pr(X1 = x1 | Z = z0).(A.21)

The last step is because of X1 ⊥⊥ X2 | Z. Similarly, we have

Pr(X1 = x1) Pr(X2 = b | X1 = x1)

Pr(X2 = b)
= Pr(X1 = x1 | Z = z0).(A.22)

Combining the above two equations, we have

Pr(X2 = a | X1 = x1) = Pr(X2 = b | X1 = x1) · Pr(X2 = a)

Pr(X2 = b)
,(A.23)

which satisfies (1) in Cond. 4.2 with C = Pr(X2=a)
Pr(X2=b)

. Similarly, (2) in Cond. 4.2 is satisfied when Eq. (A.17) holds. Thus,

we get a contradiction when both Eq. (A.16) and (A.17) hold, which concludes the theorem.

Theorem 4.4. Let L(X) = L(X1, . . . , Xd) be generated from a TSCM with graph G. If L(X) satisfies causal minimality
[2], and for all j ∈ V, i ∈ PAj and all sets S ⊆ V with PAj \ {i} ⊆ S ⊆ NDj \{i, j}, where NDj represents the non-
descendents of j, there is an xS with pS (xS) > 0 such that

(
Si|xPAj\{i}

, L(Xi | XS = xS), L(Nj)
)

satisfies the conditions

for corresponding variable types in Cor. 4.1, Thm. 4.2-4.3, and Prop. B.1-B.3 (in Appendix, stating identifiability results
for variables that share a common data type), then G is identifiable.

Proof. The proof remains the same as that of Thm. 28 in Peters et al. [21]. As stated in Remark 30 in Peters et al. [21],
the same proof can be directly applied to give valid multivariate identifiability whenever we have conditions that ensure
bivariate identifiability since the proof is based on graphical causal structures instead of model assumptions.

Proposition 5.1. For any categorical variable Xi generated from Eq. (3.2) with non-empty parents, there exist a random
variable N ′i 6⊥⊥ PAi and functions {gji }

Ki
j=1 such that generating Xi using

Xi :=

Ki∑
j=1

IRj
i

(PAi) g
j
i (N ′i)

gives identical observational distribution of Xi and PAi.
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Proof. Let Xj ∈ PAi be a parent of Xi. Let N ′i = Xj + U , where U ∼ Gaussian(0, 1). It is immediate that N ′i 6⊥⊥ PAi.
We only need to show that there exists {gji }

Ki
j=1 such that

Pr(X ′i = xi | PAi) =

Ki∑
j=1

IRj
i

(PAi) Pr(gji (N ′i) = xi) =

Ki∑
j=1

IRj
i

(PAi) Pr(f j
i (Ni) = xi) = Pr(Xi = xi | PAi).(A.24)

The proposition follows by noting that the above requirement can always be met since we do not put restrictions on the
form of {gji }

Ki
j=1 and N ′i can take any value in R.

Proposition 5.2. Suppose that G∗ is the identifiable true causal graph generating D={(xk1 ,. . . , xkd)}mk=1, under some
technical conditions [23, Thm. 1], the penalized log-likelihood score is consistent, i.e., ∀ G 6= G∗,

Pr (s (G, D) < s (G∗, D))→ 1 as m→∞.

Proof. The technical conditions and proofs can be found in Nowzohour and Bühlmann [23, Thm. 1].

B Additional Identifiability Results

Here we give identifiability results for variables of a common data type, which are mainly based on previous works of Hoyer
et al. [5], Peters et al. [7], Cai et al. [22].

Condition B.1. (Peters et al. [7]) The tuple ((S1, S2),L(X1, X2)), where X1 ∈ X1 ⊆ Z and X2 ∈ X2 ⊆ Z, satisfies
that either X1 or X2 has finite support. Let X ∈ {X1, X2} denote the cause variable, Y ∈ {X1, X2} denote the effect
variable and f denote the assigned function in the causal mechanism. There does not exist a disjoint decomposition⋃l

i=0 Ci = suppX such that 1-3 are satisfied:

1. The Ci s are shifted versions of each other,

∀i ∃di ≥ 0 : Ci = C0 + di,

and f is piecewise constant: f |Ci
≡ ci∀i.

2. The probability distributions on the Cis are shifted and scaled versions of each other with the same shift constant as
above: For x ∈ Ci,Pr(X = x) satisfies

Pr(X = x) = Pr (X = x− di) ·
Pr (X ∈ Ci)

Pr (X ∈ C0)
.

3. The sets ci + suppN := {ci + h : n(h) > 0} are disjoint.

Proposition B.1. (Peters et al. [7]) Suppose that a discrete random variable X1 ∈ Z and a discrete random variable
X2 ∈ Z are generated by a TSCM ((S1, S2), L(N1, N2)) with a graph G : X1 → X2 or G : X1 ← X2. If ((S1, S2),
L(X1, X2)) satisfies Cond. B.1, then G is identifiable.

Condition B.2. (Hoyer et al. [5]) Given the tuple ((S1, S2),L(X1, X2)), where X1 ∈ X1 ⊆ Z and X2 ∈ X2 ⊆ Z, let
X ∈ {X1, X2} denote the cause variable, Y ∈ {X1, X2} denote the effect variable and f denote the assigned function in
the causal mechanism. All related probability densities are strictly positive and that all densities, fi and gi are three times
differentiable for i = 1, 2, · · · , k. The following differential equation does not hold for any x and y with ν′′(y−f(x))f ′(x) 6= 0:

ξ′′′ = ξ′′
(
−ν
′′′f ′

ν′′
+
f ′′

f ′

)
− 2ν′′f ′′f ′ + ν′f ′′′ +

ν′ν′′′f ′′f ′

ν′′
− ν′ (f ′′)

2

f ′
,(B.25)

where ν = log pny , ξ = log px, and we have skipped the arguments y − f(x), x, and x for ν, ξ, and f and their derivatives,
respectively.

Proposition B.2. (Hoyer et al. [5]) Suppose that a continuous random variable X1 ∈ R and a continuous random
variable X2 ∈ R are generated by a TSCM ((S1, S2), L(N1, N2)) with a graph G : X1 → X2 or G : X1 ← X2. If ((S1, S2),
L(X1, X2)) satisfies Cond. B.2, then G is identifiable.

Condition B.3. (Cai et al. [22]) The tuple ((S1, S2),L(X1, X2)), where X1 ∈ X1 = [T1] and X2 ∈ [T2], satisfies that if
X2 is the parent of X1, the size of the parental partition K1 < T2 and that if X1 is the parent of X2, the size of the parental
partition K2 < T1. Let X ∈ {X1, X2} denote the cause variable, Y ∈ {X1, X2} denote the effect variable. There does not
exist two different values y1, y2, and a constant C, such that ∀x ∈ X ,

Pr (Y = y1 | X = x) = C · Pr(Y = y2 | X = x).

Proposition B.3. (Cai et al. [22]) Suppose that a categorical random variable X1 ∈ [T1] and a categorical random
variable X2 ∈ [T2] are generated by a TSCM ((S1, S2), L(N1, N2)) with a graph G : X1 → X2 or G : X1 ← X2. If ((S1, S2),
L(X1, X2)) satisfies Cond. B.3, then G is identifiable.
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C Experimental Details

C.1 Synthetic Data Generation To generate datasets from TSCMs, we specify the number of variables d, the
number of variables of each type, and the number of edges e. In some experiments, we specify the graph density, defined
as ρ , 2e/d2, instead of directly specifying e. We randomly set the data type of each variable to be continuous, discrete,
or categorical to satisfy the requirement. An undirected graph is sampled from the Erdős-Rényi model with the expected
number of edges equal to e. We obtain a DAG by orienting the undirected edges following a uniformly randomly picked
ordering of the d variables. Following the topological order in the DAG, we generate the value of each variable from the
value of its parents and corresponding noise.

For variable Xi with a parental set PAi, we randomly split the sample space of each parent Xj ∈ PAi into two disjoint
subsets by randomly selecting a split point if Xj is a numerical variable and |Xj | disjoint subsets if Xj is categorical. Then
all possible combinations of these subsets, form a parental partition for Xi. The generation process for variables of different
types is described as follows:

1. If Xi is a continuous variable, the function f j
i associated with each region in the partition is randomly selected from

a linear function, or a nonlinear multilayer perceptron with sigmoid activation functions and two hidden layers. The
parameters of f j

i are uniformly chosen from [−2,−0.5] ∪ [0.5, 2]. The noise variables are sampled from a Gaussian
distribution N (0, σ2) where σ ∼ Uniform(0.1, 0.5).

2. If Xi is a discrete variable, the above procedure remains the same and we discretize it into b discrete values, where b
is a uniformly sampled integer between 50 and 200.

3. If Xi is categorical, we implicitly specify the generating function. We randomly choose a category cji for each region,
then sample xi from a categorical distribution that assigns cji to xi with probability pc, where pc ∼ Uniform(0.6, 0.9).
If PAi is empty, then the parental partition has only one region which is exactly the entire sample space and Xi is
fully determined by the noise variables from the above procedures.

C.2 More Experimental Results We present the precision and recall score of each method in Fig. 5 and 6. The
experimental settings remain the same as in Sec. 6.1. TRACER achieves significantly higher precision and recall score
than other baselines. The GS method achieves higher recall than TRACER mainly because it outputs an equivalence class
that contains undirected edges, and an edge is counted as correctly identified even if it is recognized as undirected.
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Figure 5: Averaged precision and recall over 100 simulations with varying proportions of categorical variables.
The proportion of discrete variables is fixed at 0.3. For methods that output an equivalence class, the SID curve
is plotted by averaging the corresponding upper and lower bound for better readability.
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Figure 6: Averaged precision and recall over 100 simulations with varying m/ρ/d. The proportion of
continuous/discrete/categorical variables are 0.4/0.3/0.3 respectively. Unless specified by the x-axis, we set
m = 1000, d = 10, and ρ = 0.2.
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